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LETTER TO THE EDITOR 

Effects of quenched disorder on layering transitions 

R Kariotis 
School of Mathematical and Physical Sciences, University of Sussex, Brighton BNl 9QH, 
UK 

Received 13 June 1986, in final form 15 July 1986 

Abstract. The influence of a static disordered substrate and a static disordered external 
field on thin-film layering transitions is investigated. We find that when the disorder is 
confined to the substrate alone, the influence appears only in the lowest transition line and 
acts to encourage film growth at finite temperatures. Random external fields influence 
thick, as well as thin, films and act to discourage the film development, resulting in a 
re-entrant-like effect. 

Considerable progress has been made recently in understanding the statistical 
mechanics of thin films on substrates (for a thorough study up to 1982 see Pandit et 
a1 (1982); for a more recent review see Sullivan and Telo da Gama (1985)). At the 
same time, interest in the effects of static disorder in lattice models has received a 
great deal of interest (for a review of work in this area see Grinstein (1985)). A natural 
extension of these two fields, now receiving attention, is to investigate the influence 
of disorder on the properties of thin films (see, for example, Forgacs er a1 1985). In 
this letter we investigate the effect of weak static disorder on the properties of thin 
films as a function of temperature and chemical potential. The model Hamiltonian 
used in the calculations is the classical three-dimensional lattice gas (Pandit et a1 1982) 

where Jij is the nearest-neighbour coupling between sites i and j ,  p is the chemical 
potential and ni is defined to be either 0 or 1 if site i is empty or occupied respectively. 
vi is the van der Waals attraction of the substrate on the individual adatom located 
at site i = ( i , ,  i,,, i,) and is assumed to be of the form vi = V ( z )  = u0/ z3  where z is the 
distance from the substrate. Disorder may appear either in the value of the nearest- 
neighbour coupling J (referred to as off-diagonal disorder), or in the form of an 
external (position-dependent) field added to p (diagonal disorder). In what follows 
we will consider one special case of each of these two types of randomness. 

The thermodynamic properties of the system are obtained from the free energy 
which is obtained from the average 

F = -T(ln(Z)) (2) 

Z = Tr e-BH. (3) 

where Z is the partition function 

The trace means sum over all possible configurations of occupied and unoccupied 
sites (the thermodynamic average), and the angle brackets indicate the sum over all 
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possible configurations of disordered bonds or external field values (the statistical 
average). The two averages are distinct and must (essentially) be performed in the 
order implied in the expression above (indicative of the two different timescales 
involved). It is possible to take advantage of the convenience of doing the statistical 
averaging first by using the replicated partition function (Emery 1975, Grinstein and 
Luther 1976, Edwards and Anderson 1975). This requires making the replacement 

ln (2 )  = lim(Z" - l ) /n.  (4) 
n-0 

The effective Hamiltonian of the replicated system is similar in appearance to what it 
was previously: 

ija ia 

where the summation over a is a summation over the n replicas and np is the replicated 
lattice gas variable at site i. Averaging can now be done over the partition function 
Z (  n) rather than ln(Z) so that the trace over the occupation numbers can be performed 
last. 

We consider two types of disorder. First, suppose that the adsorption of the first 
layer, with bond strength JL, is disordered. Typically, this may arise if the plane 
determined by the substrate has surface irregularities in it such as impurities or defects. 
Writing J,  = Jo+ SJ, where Jo = ( J ) ,  the Hamiltonian can be split into two parts: 

H = H , + S H  (6) 

where SH contains the terms in H representing the binding of the adatoms in the first 
layer to the substrate. The average partition function can be written as the sum of the 
cumulants 

(Z( n ) )  = Tr e-pHo exp{ - P ( S H )  + t p ' [ (  SH') - ( SH)'] + a  .}. (7) 

In everything that follows, we assume (6H) = 0 and treat only even powers of 6H. 
(Two additional possibilities arise in that the disorder may either be Gaussian or 
non-Gaussian; we will assume that the disorder is weak and Gaussian. Later we will 
comment on what physical effects may appear as the disorder becomes stronger and/or 
non-Gaussian.) The modification of the Hamiltonian now can be written 

Assuming that the disorder at one site is uncorrelated with that at other sites 
(homogeneous disorder), the factor in brackets is zero except when i = k. Therefore 
the right-hand side of the equation simplifies to 

where ( S J S J )  = y, and the summation is now over all sites on the substrate. It is possible 
to convert the coupling between replicas into a modified coupling to the substrate 
within each replica by taking note of the following manipulations. The summation in 
equation (9) contains n terms like n" and n(n - 1)  terms like n a n P  ( a  not equal to 
p ) .  To begin perturbation theory using Ho as the unperturbed Hamiltonian (recalling 
that Ho is diagonal in replica space), we only keep terms of order n and y, and rewrite 
the resulting trace as n" times the average (on the ordered substrate) of the remaining 
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replica variable. This modification can then be added directly to the replicated Ho 
giving an effective binding energy for the first layer of 

( loa)  J(eff) = Jo - f rP [ 1 - (n)oI 

where ( n ) o  is the average on the ordered substrate. Calculation of Tr e-pH can now 
be carried out by any of the methods used for the ordered substrate. Mean-field theory 
(de Oliveira and Griffiths 1978) is sufficient to show approximately how the p against 
T phase plane is affected by the disorder and was used to obtain ( n ) o  giving 

J (eff ) = j0 - 1 ypP( P E  ) ( lob)  

where P ( x )  = [ 1 + exp( -x)]-' and E = Jo( 1 + 2)  - p. 2 is the lattice coordination 
number. However, the re-entrant behaviour discussed in an earlier letter (Kariotis and 
Prentis 1986) can only be seen using the (cumulant form of the) real space renormalisa- 
tioil group which was described in that letter. Therefore, the results discussed below 
were obtained by evaluating the effective Hamiltonian, as we did previously. Before 
going into these results we will describe the example of diagonal disorder which can 
also be treated in a manner similar to that just given. 

The second kind of disorder that we want to consider is that due to a random 
external field and involves adding to the Hamiltonian a term of the form 

He,  = h,n: ( 1 1 )  
ia 

where hi is a homogeneous random field and (h ihj )  = yS,. This is essentially equivalent 
to the random field Ising model ( RFIM) (see Grinstein (1985) for a review) except that 
in this case the presence of the substrate must be taken into account. This kind of 
disorder may be present when the substrate imperfections are longer-ranged than in 
the case treated above. For example, if the bulk substrate has a second species randomly 
distributed throughout, the effective van der Waals potential becomes a random 
variable. (In principle the disorder would then no longer be homogeneous; however, 
to lowest order in y this contribution simply appears as a shift in the magnitude of 
J . )  Calculation of an effective Hamiltonian proceeds as for the case of the disordered 
substrate, resulting in a modified chemical potential of the form 

CL(eff) = CL +iYPP(EP). (12) 
Except for a change in sign, this result is similar in form to that for the case of the 
disordered substrate. 

In figures 1 and 2 we have shown the results of these calculations and the main 
conclusion is that the disordered substrate acts to encourage, and the random field 
acts to inhibit, the growth of the film. Both effects are negligible at low temperatures 
and are strong only for thin films. 

In figure 1, where the disorder is confined to the substrate alone, all influence 
appears entirely in the first layer transition. The second and subsequent layers are 
essentially unchanged. The fact that the disorder effectively increases the binding 
energy can be understood by the following argument. When a bond that is weaker 
than average is present, an adatom is less likely to be deposited at that site without 
necessarily discouraging adsorption on neighbouring sites. When a bond (stronger 
than average) is present, a single adatom is favoured, and once deposited acts to further 
encourage nearest-neighbour deposits even when the adjacent bonds are weak. Thus 
the fluctuation of bond strength above and below the average value does not have a 
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Figure 1. The cc against T plane for the lowest two first-order transition lines with (marked 
D) and without (marked 0) a disordered substrate. The effect is essentially negligible 
along the line separating the first and second layer transitions. 
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Figure 2. The p against T plane for the lowest two first-order transition lines with (marked 
D) and without (marked 0) a random external field. The calculation was performed 
assuming homogeneous local disorder. 
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symmetric effect on the favoured configurations at finite temperatures. At T = 0 this 
argument is not valid since it applies to an ensemble of configurations, hence at zero 
temperature the effect of fluctuations above and below the average coupling strength 
cancels out. 

In figure 2, the slight re-entrant-like behaviour can be seen due to the disordered 
external field. Behaviour similar to this has recently been reported (Wagner and Binder 
1986, Kariotis and Prentis 1986). The qualitative explanation of this effect, i.e. that 
this type of disorder inhibits rather than encourages film growth, follows along the 
same reasoning as in the disordered substrate but results in the opposite conclusion 
due to the fact that the chemical potential is a diagonal contribution to the Hamiltonian. 
Physically this means that if the chemical potential is locally weak, the probability of 
there being an adatom at that site is small even if the neighbouring sites are occupied. 

In conclusion, we have shown that for weak disorder on the substrate, the develop- 
ment of the first layer at finite temperatures occurs at lower pressure. For disorder in 
the external field, film development at finite temperatures is inhibited most strongly 
in the first layer, and less so in subsequent layers. The case of strong and/or non- 
Gaussian disorder is much more complicated. Longer-range forces (for example, 
next-nearest-neighbour interactions) will be generated by the disorder, having either 
attractive or repulsive behaviour depending on the strength and the extent of the 
non-Gaussian properties. A study of the variety of effects that appear as these additional 
terms are included is presently being done. 

This work was supported in part by a grant from the SERC (UK). 
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